The complex interaction of causing and resulting factors of overweight/obesity

Increasing the understanding of the problem and deducing requirements for prevention strategies

Eva Hummel, Friederike Wittig, Karlsruhe; Katja Schneider, Nadine Gebhardt, Giessen; Ingrid Hoffmann, Karlsruhe

Introduction

Overweight/obesity has developed into an international epidemic, with severe consequences [1, 2], even though numerous prevention projects have been and are being implemented [e.g. 3, 4]. One reason for the mediocre success may be that preventive measures do not adequately allow for the complexity of the problem [5]. In this context, the present study presents and investigates the complex process of overweight/obesity using NutriMod, a nutritional ecological modelling technique. A qualitative cause and effect model is used here to visualise the interactions between the factors and effects described in the literature. Examples are presented to demonstrate new insights into overweight/obesity and preventive measures which may be identified by the presentation and investigation of these complex events.

Developing the model: the NutriMod modelling technique

A qualitative cause and effect model was developed on the basis of the scientific literature, with the help of the nutritional ecological modelling technique (Nutritional ecological Modelling) [6, 7]. The four dimensions of nutrition - health, society, environment and economics - were considered, in accordance with the nutritional ecological approach [8, 9]. Between March 2006 and February 2009, a search of the scientific literature was performed in numerous databases (e.g. Medline, Web of Science, Agricola, FSTA, EMBASE), using search terms such as overweight, obesity, causes and effects, together with search terms from the different dimensions of nutrition (e.g. for the...
Fig. 1: Qualitative Model of Causes and Effects of Overweight/Obesity [10]

- **Food supply**
  - Advertising
  - Food availability
  - Serving size
  - External stimuli
  - Price
  - Food composition
  - Labelling

- **Socio-economic status**
  - Education
  - Income
  - Profession/occupation

- **Agents of socialisation**
  - Media
  - Peer groups
  - School/kindergarten
  - Family
  - Migration
  - Nutrition competences

- **Lifestyle factors**
  - Nutrition behaviour
    - Physical activity
    - Media consumption
  - Sleeping behaviour
  - Smoking
  - Technological progress/globalization
  - Environmental pollution

- **Mental factors**
  - Emotions/stress
  - Traumatic experiences
  - Body image
  - Self-esteem
  - Depression
  - Mortality risk

- **Socio-economic change**
  - Affluent society
  - Fast-paced lifestyle
  - Ideal of beauty
  - Urbanization
  - Women's employment
  - Household structures
  - Religion

- **Social change**
  - Infrastructure/neighbourhood

- **Infrastructure/neighbourhood**
  - Nutrition competences

- **Co-morbidities**
  - Metabolism
  - Cardiovascular system
  - Lungs
  - Gastrointestinal tract
  - Connective tissue/skeleton
  - Carcinoma

- **Costs**
  - Loss of workers' productivity
  - Adaptation to body size
  - Clothing
  - Diagnostics/therapy/rehabilitation
  - Labour market

- **Biological factors**
  - Hormones/cytokines/other factors
  - Genetics
  - Age
  - Sex

- **Prenatal and infantile factors**
  - Infant nutrition
  - Birth weight
  - Gestational diabetes

- **Overweight/obesity**
  - Isolation
  - Discrimination
  - Quality of life

- **Prevention**

© Authors: Katja Schneider, Friederike Wittig, Eva Mertens, Ingrid Hofmann 2009
The complex causes and effects in overweight/obesity

Various aspects of the complex process of overweight/obesity will now be described in more detail and discussed on the basis of the model.

Factors affecting overweight/obesity

Overweight/obesity is influenced by numerous factors. A distinction must be made between direct and indirect factors. The cause and effect model shows only two factors which directly influence overweight/obesity: the energy balance, which results from the balance between energy intake and energy consumption, and biological factors, which subsume genetic predisposition (genetics in the model) and hormones/cytokines/other factors. All other factors described in the literature have an indirect effect on the development of overweight/obesity and almost always act through energy balance. For example, social change in the model is an indirect factor, which can contribute to the development of overweight/obesity [1] through a positive energy balance from changes in nutrition behaviour and reduced physical activity [11]. This example shows that overweight/obesity can arise from a series of interacting factors, so-called “process chains”. The model can be used to identify and understand these process chains.

Effects of overweight/obesity

Overweight/obesity is influenced by many different factors and has many different effects. The model shows that there are both direct effects and indirect effects acting through process chains. For example, overweight/obesity directly causes costs due to necessary adaptations in vehicles [12] or operating tables [13] arising from changes in body measurements (in the model: adaptation to body size). Moreover, indirect costs arise from the diagnosis and therapy of comorbidities associated with overweight/obesity, such as changes in metabolism or the development of carcinoma [11].

Feedback loops

Process chains can close to form process cycles, which are known as feedback loops. These become clear if the causal connections between factors are depicted in a cause and effect model. For example, overweight/obesity can have the direct effect that affected individuals are at increased risk of suffering from depression, negative body image and low self-esteem [14]. These mental factors can lead to changes in nutrition behaviour and physical activity, causing a consistently positive energy balance [15], which may then enhance overweight/obesity [16], thus completing the vicious circle. Like most feedback loops in this model, this is a positive feedback, causing a vicious circle. As a result of feedback loops, effects can become factors and conversely. Thus, mental factors primarily have a direct effect on overweight/obesity, but, due to feedback loops, can have an indirect influence on its genesis or development. It is then not always possible to distinguish cause and effect in this complex process. Visualisation of the links can help us to portray factors which can be both cause and effect.

Multicausalities

Aside from process chains and feedback effects, the model aids the recognition of multicausality, i.e. when a single factor has several causes. For example, the model shows that mental factors are not
only influenced by overweight/obesity (as already mentioned), but also by numerous other factors, such as social change, lifestyle factors, agents of socialisation, etc.

**Multidimensionality**

In accordance with the nutritional ecological approach, factors affecting overweight/obesity, as well as their effects, are assigned to the four dimensions of nutrition (health, environment, economics and society). As a result of the visualisation in the cause and effect model, it is evident that factors of different dimensions may interact. This implies that process chains and feedback loops may act over more than a single dimension of nutrition, or be interdisciplinary. For example, social change (dimension: society) influences lifestyle factors (dimensions: society and health), which can then lead to overweight/obesity through changes in energy balance. Numerous co-morbidities (dimension: health) may develop as a consequence of overweight/obesity, leading to increased costs (dimension: economics).

**Preventive measures must allow for the complexity of the process**

A large proportion of current prevention projects have the objective of nutritional behaviour or physical activity and thus the energy balance [17].

Nevertheless, the cause and effect model of the complex process of overweight/obesity shows that a multitude of factors act on nutrition behaviour and physical activity, which are themselves influenced by other factors. This means that the causes of the genesis of overweight/obesity are frequently upstream to nutrition behaviour and physical activity and act through process chains. Moreover, the cause and effect model includes feedback loops, converting effects to causes, with self-enhancing effects possibly leading to vicious circles. If a preventive measure is to be successful, it must therefore identify causes or possible approaches related to both direct and obvious factors, as well as indirect upstream factors along the process chains, as well as recognizing and considering feedback loops [see 18]. It is important to be aware of the multicausal interactions between the factors, as the influence of a preventive measure can counteract other influences within the complex process. Thus, both the factor directly affected by the preventive measure and other factors in the process chain may be independently affected by other factors. If these indirect effects are neglected, the success of the measure may be attenuated or prevented. For example, a measure to increase schoolchildren’s motivation to eat more fruit and vegetables (in the model: food preferences as subfactor of nutrition behaviour) would be unsuccessful if it neglected the current opinions and trends in the peer group. Alternatively, the motivation may be enhanced, but fail to change food selection (subfactor of nutrition behaviour), perhaps because fresh fruit and vegetables are not available at work or in the school (in the model: availability) or because the price is too high. It is therefore expedient to remember multicausality. As the process is multidimensional, dif-
different scientific disciplines and fields of practice must be involved in the interdisciplinary and transdisciplinary approaches used in planning preventive measures. The model can be supported by the visualisation of different factors in single dimensions, with identification of the relevant players [7, 8].

Conclusion

If preventive measures are to be successful, it is important to bear in mind how complex the process of overweight/obesity is. The multidimensional interactions between the factors and their effects must be better understood and process chains, feedback loops and multicausality must be recognised. The nutritional ecological modelling technique NutriMod was used to visualise the direct and indirect factors for overweight/obesity and their effects within complex and multidimensional interactions within a qualitative cause and effect model. This visualisation can enhance the understanding of the problem and thus provide a basis for the conception and implementation of effective preventive measures. The model makes it clear that there are two direct factors influencing the process chains, together with numerous indirect factors and feedback loops; these can all influence the genesis and development of overweight/obesity. Thus, the model can help to identify causes, which may then provide possible approaches for novel preventive measures. The model also makes it clear which factors might impair the success of a measure, if its multicausal interactions are not recognised and considered. The model also portrays the multidimensionality of overweight/obesity and this can help to identify the relevant disciplines and areas of practice for interdisciplinary approaches and which can be incorporated into the conception of preventive measures. The present qualitative cause and effect model thus provides a good basis to make allowance for the complexity of the process of overweight/obesity and to develop appropriate preventive measures.

Acknowledgements:

We wish to thank Katrin Kelch for support in the literature search and evaluation for the preparation of the final version of the model. We also wish to thank Birte Meng, Lina Burmeister, Linda Depzinski, Kerstin Ehlers, Linda von Glahn, Josina Haasch, Ina Hottmann, Ulrike Kampowsky, Miriam Kurz, Anne-Katrin Laubersheimer, Martina Naumann, Anna Neff, Tobias Rosch, Kathrin Schauerte, Fides Schulze and particularly Leonie Knorr and Annett Weisser for helping to develop an earlier version of the model.

References


M.Sc. Eva Hummel1, 2
Eva.Hummel@mri.bund.de
Phone: +49 (0)721-66 25 268
Fax: +49 (0)721-66 25 552
M.Sc. Friederike Wittig2
Dr. Katja Schneider1
Dr. Nadine Gebhardt1
Prof. Dr. Ingrid Hoffmann2
1Arbeitsgruppe Ernährungsökologie
Institut für Ernährungswissenschaft
Justus-Liebig-Universität Gießen
Wilhelmstraße 20, 35392 Gießen
www.uni-giessen.de/fbr09/nutr-ecol
2Institut für Ernährungsverhalten
Max Rubner-Institut, Bundesforschungsinstitut
für Ernährung und Lebensmittel
Haid-und-Neu-Straße 9, 76131 Karlsruhe
www.mri.bund.de/de/institute/ernahrungs-verhalten.html

Conflict of Interest

The authors declare no conflict of interest according to the guidelines of the International Committee of Medical Journal Editors.


