Olfactory disorders in oncology – an overview

Sabine Chmelar, Mödling/AT, Andreas Temmel, Perchtoldsdorf/AT, Peter Kier, Wien/AT, Herman Toplak, Graz/AT, Elisabeth Pail, Bad Gleichenberg/AT

Summary

Currently olfactory disorders in cancer patients are often seen as a minor matter, but they actually deserve more attention. Literature shows that tumor diseases and their treatment can affect the olfactory perception of the patients. Olfactory disorders impair quality of life, lead to loss of appetite, decreased nutrient intake and therefore are subsequently risk factors in the complex development of malnutrition.

More scientific work is needed for a better understanding of olfactory disorders and their impact on oncological patients, to explore new therapeutic approaches and scientifically reinforce nutritional therapeutic recommendations. As a result of improving the dietary condition, the therapeutic effectiveness as well as the quality of the patients’ lives can be improved.

Changes in the perception of odors by patients in oncological care are not only burdensome for those affected, but also pose a challenge for the dietician. This article aims to provide an overview on the latest information concerning this topic.

Keywords: olfactory disorders, oncology, malnutrition, quality of life, diet therapy

The olfactory sense

Besides its function in food intake, olfaction is closely linked to our emotions. On the one hand the classification in good and bad odors is genetically determined, e.g. to recognize spoiled food, on the other hand it is strongly shaped by cultural influences on us. In addition, perception of the body odor of other people fulfills an important social function, such as the newborn’s capability of finding the mother’s mammilla [1–3].

The human ability of smell perception is dependent on various factors. Advancing age and consumption of tobacco both decrease olfactations. Physiological factors, such as hormonal status or regulatory mechanisms in hunger and satiety, can influence the sense of smell [4, 5]. Whereby in hunger the olfactory function improves and the stimulus threshold for odors declines [6].

Definition of olfactory disorders

• Table 1 provides an overview on the different manifestations of olfactory disorders (dysosmia).

Scientific studies focusing on olfactory disorders in patients with an oncological primary disease cover very heterogeneous patients groups in terms of tumor type, stage, therapy, etc. Therefore results are very hard to compare to each other and data, such as the incidence of olfactory disorders, vary considerably [9, 10].

Nutritional relevance

Prevention of malnutrition, accompanying an improvement of the subjective state of quality of life and an increase in effectiveness of the therapy, is a major therapeutic goal in nutrition therapy of oncological patients [11–13]. Changes in odor perception are – among other symptoms such as alopecia (loss of hair), dysgeusia (alterations of the sense of taste), fatigue, etc. – a strong limiting factor in everyday life of cancer patients [14] and one of many symptoms that affect food intake significantly [15]. A reduced sensitivity or changes in odor and flavor perception are associated with decreased nutrient intake and the development of food aversions [9].

Zitierweise:
This article is available online: DOI: 10.4455/eu.2015.002
Currently, odor or taste problems are not routinely questioned or clarified. This might be due to the lack of instruments to investigate in a brief and concise way whether dysosmia is present or not. Furthermore, the different forms of olfactory dysfunction in cancer patients complicate detection. In addition, the current dietary recommendations (such as choose cold food, avoid strong odors, etc.) are of rather trivial nature and scientifically unsubstantiated [15]. Attempts at therapy with zinc also have not shown any positive results [16].

Smell and taste changes have a fundamental impact on the lives and the diet of the persons affected. It is not solely about the nutrient intake and food selection, but also about the social component of the food environment, subsequently affecting the quality of life. Early detection of smell and taste disorders would be necessary for the timely prevention of malnutrition.

Explanatory theories for olfactory disorders in cancer

Based on animal studies, the average lifetime of olfactory neurons is estimated at 30 or 90 days [8, 17]. The cytotoxic effects of chemotherapy might interfere with the regeneration of the olfactory neurons from the basal cells [18], although the reasons for this are yet not fully understood. Suitable explanations would be a reduced number of receptor cells through destruction or a negative effect on cell renewal, changes in cell structure or changes in receptor surface or interruption of neural coding [9, 19]. Substances for tumor therapy, in studies repeatedly associated with smell and taste disorders, are doxorubicin, methotrexate, cisplatin, carmustine and vincristine [19, 20]. A Japanese study by Suga et al. with 136 patients showed that a wide variety of chemotherapeutics have a negative effect on olfactory performance. 31% of patients who received docetaxel and fluorouracil, 22% of patients with a paclitaxel therapy and 23% treated with the HER-2-antibody trastuzumab reported an olfactory dysfunction [21].

A recent work by Steinbach et al. examined the impact of carboplatin-containing chemotherapy drugs on the senses of smell, taste and hearing. During therapy the sense of smell decreases significantly and – as confirmed in other studies [22, 23] – is recovered after about three months [24].

In addition, Schiffmann supports the theory that the presence of the tumor leads to metabolic changes that affect the sensory perception, or complications such as stomatitis (inflammation of mucous lining of any of the structures in the mouth), dry mouth and infection might also play a role [19]. Additionally a pre-existing malnutrition of the patient concerned could be the cause of odor and flavor changes [20].

Methodological problems in the identification of olfactory disorders

Patients’ interviews confirm that smell and taste disorders are perceived quite differently in terms of severity, effects, etc. and that patients show both: either a decreased or an increased sensitivity to odors. One reason for the different results is the methodology of the detection of olfactory dysfunction. Patients may not be able to distinguish between taste and smell when explaining their subjective impressions, or by a change of olfaction they understand that smells smell different than before, but not that the odor threshold changes [23, 25].

Table 1: Definition of olfactory disorders [7, 8]

<table>
<thead>
<tr>
<th>Quantitative odor distortion</th>
<th>Qualitative odor distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>hyperosmia</td>
<td>exaggerated sense of smell</td>
</tr>
<tr>
<td>normosmia</td>
<td>normal sense of smell</td>
</tr>
<tr>
<td>hyposmia</td>
<td>decreased ability to detect odors</td>
</tr>
<tr>
<td>anosmia</td>
<td>total inability to detect odors</td>
</tr>
<tr>
<td>functional</td>
<td>significant limitation with low residual perception</td>
</tr>
<tr>
<td>partial</td>
<td>significant reduced sensitivity to one or more specific fragrances</td>
</tr>
</tbody>
</table>

Schiffmann supports the theory that the presence of the tumor leads to metabolic changes that affect the sensory perception, or complications such as stomatitis (inflammation of mucous lining of any of the structures in the mouth), dry mouth and infection might also play a role [19]. Additionally a pre-existing malnutrition of the patient concerned could be the cause of odor and flavor changes [20].

Methodological problems in the identification of olfactory disorders

Patients’ interviews confirm that smell and taste disorders are perceived quite differently in terms of severity, effects, etc. and that patients show both: either a decreased or an increased sensitivity to odors. One reason for the different results is the methodology of the detection of olfactory dysfunction. Patients may not be able to distinguish between taste and smell when explaining their subjective impressions, or by a change of olfaction they understand that smells smell different than before, but not that the odor threshold changes [23, 25].
Current study results

According to Brisbois et al., smell and taste changes are observed in 50–90 % of advanced stage cancer patients. The characteristics can be of both quantitative (e.g. altered sensitivity) as well as qualitative nature (e.g. phantom smells) [15]. Additionally, patients often describe odors during or immediately after a dose of chemotherapy, which can be explained by the diffusion of the drug from the capillaries in the nasal mucous into the olfactory receptors [18]. Patients with smell or taste disorders are more likely to report oral problems, such as dry mouth, aphthous ulcer or mucositis, loss of appetite, nausea and depressive mood than patients without smell and taste changes [26]. Frequent subjective complaints – based on the chemosensory perception – are a bad taste in the mouth, changes in taste and altered sensitivity to odors. The altered sense of olfaction – which, as already shown above, is usually associated with a change in taste – can be expressed by an unpleasant perception of especially food odors, but also by other odors, such as perfume, smell of hospitals, etc. [27].
Furthermore, there are individual case reports, such as that of a 63-year-old woman with acute lymphoblastic leukemia and chemotherapy-associated parosmia, which resulted in life-threatening weight loss. The problem was eventually solved temporarily with a nose clip that prevented her from smelling anything at all. After nine months without chemotherapy, the olfactory function had improved in an extent, even without this clip sufficient oral food intake was possible [26].

Table 2 provides an overview of the current study results.

Study results in breast cancer patients

Steenbach et al. in Germany have a special focus on the particular group of breast cancer patients. In 2007, a total of 69 breast cancer patients and 18 patients with other gynecological malignancies were recruited in different hospital centers in order to examine the effects of chemotherapy on olfactory performance. A smell test with Sniffin’ Sticks was performed on the patients before, during, directly after chemotherapy and post transplant.
after and three months after the end of chemotherapy. Both, the total value and all three subtests (thresholds, identification and discrimination test), showed a significant reduction in olfactory performance during chemotherapy, wherein the threshold test was the most and the identification test the least affected [22]. Three months after chemotherapy, the olfactory performance has recovered, confirming the results from a qualitative study, also showing a recovery time of about 3.5 months after the end of chemotherapy [23].

In another study, Steinbach et al. re-analyzed the data of 69 breast cancer patients more precisely. From this could be seen that before chemotherapy the total value of the Sniffin’ Sticks test decreased significantly with bigger tumor size and with increasing lymph node involvement, whereas with the latter’s the patients’ age may have played a role as a potential confounder. The presence of metastases, the resection status, or the histological type of breast cancer had no effect on the sense of odor or taste of the patients [10]. This study found no correlation between the smell and taste performance and the hormone receptor status of estrogen and progesterone and the expression of HER-2. This is in contrast to a study conducted in 1985, in which estrogen-positive breast cancer patients had a significantly reduced olfactory performance compared to the matched controls, and these results did not correlate with estrogen-negative subjects [35]. However, this result could be explained by the higher average age in the estrogen-positive group [10].

Conclusion

Current study results on olfactory disorders in oncologic patients are very heterogeneous and raise a lot of questions. Therefore, further studies are necessary to make proper recommendations in the future. The identification and observation of these symptoms may improve the holistic approach of the medical treatment of oncologic patients, particularly in respect of olfactory disorders being one factor in the development of malnutrition.

Conflict of Interest

The authors declare no conflict of interest according to the guidelines of the International Committee of Medical Journal Editors.
References

DOI: 10.4455/eu.2015.002