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Phenotypic characterization  
of panelists as selection criterion
Karolin Höhl, Heidelberg; Mechthild Busch-Stockfisch, Lauenburg

Summary
The phenotype of perceiving propylthiouracil (PROP) as either bitter or tasteless 
(so-called “PROP status”) correlates with other sensory parameters, including sen-
sitivity to other tastes or food preference. The present article investigates whether 
knowledge of the phenotypic PROP status can provide relevant information on 
the suitability for analytical test procedures. 82 female students without sensory 
training were classified as PROP non-tasters (PNTs, n = 22), PROP medium-tasters 
(PMTs, n = 39) or PROP super-tasters (PSTs, n = 21) and the sensitivity to sucrose 
and caffeine was determined. 45 subjects from all of these three sensitivity groups 
were then given one week of sensory training (intervention group). The remai-
ning 37 test subjects from all three groups received no intervention (control). 
The sucrose and caffeine sensitivity of the intervention and control groups were 
checked at two time points at an interval of 6 months.
The results show that the initial differences in caffeine sensitivity in the three sensi-
tivity groups could be eliminated by sensory training, as well as by experience or 
habituation. Even after an interval of 6 months, caffeine sensitivity did not return 
to the original value.
Thus the phenotypic PROP status is essentially irrelevant to the formation of sen-
sory panels. After sensory training and/or experience and habituation, PNTs and 
PMTs can achieve the same test sensitivity to sweet and bitter as PSTs.
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Introduction

Sensory abilities – including taste 
sensitivity to sweet, sour, bitter, 
and umami, and perception of the 
intensity and recognition of differ- 
ent odors – differ between different 
individuals and within the same in-
dividual in the course of the day and 
year, depending on hormonal fluctu-
ations [1] and environmental influ-
ences such as temperature, air pres-
sure and light intensity [2–4].
Various factors influencing sensory 
discrimination, e. g. age, state of 
health, psychological factors, and 
genetic susceptibility, have already 
been published [5]. On this basis  
(  Ernährungs umschau 12/2015, 

p. 216 ff.), the present article now 
examines whether and to what ex-
tent genetic susceptibility influences 
individual suitability to be a sensory 
test person (TP). For about the last 
85 years, sensory studies have paid 
great attention to the effects of ge-
netic susceptibility on the perception 
of the bitterness of a specific group of 
thioureas (e.g. phenylthiocarbamide 
[PTC] or propylthiouracil [PROP]). 
This originated in a chance disco-
very by A. L. Fox in the 1930s [6, 
7]. The genetic foundation of these 
phenotypic differences – the ability 
or inability to perceive the bitter 
taste of PROP and/or PTC solutions 
(the “PROP status”) – has now been 
identified. This has been found to 
involve substitutions of key amino 
acids in the bitter receptor TAS2R38 
and to lead to receptor variants with 
different sensitivities to substances 
with an isothiocyanate or thioamide 
group [8–12]. However, the TAS2R38 
receptor variant only explains about 
50–85 % of the phenotypic PROP 
status [13]. At the phenotypic level, 
three different groups can be distin-
guished: PROP non-tasters (PNTs), 
PROP medium-tasters (PMTs) and 
PROP super-tasters (PSTs), who 
react to different concentrations of 
the substance with different sensi-
tivity (PNTs < PMTs < PSTs). Five 
different combinations of substitu-
ted amino acids on the receptor can 
be distinguished by genotype (AVI, 
PAV, AAI, AAV and PVI)1, of which 

1  The letters stand for the amino acids alanine 
(A), valine (V), isoleucine (I) and proline (P). 
The G-protein-coupled PROP receptor con-
sists of about 333 amino acids; its function is 
modified by substitution of these four amino 
acids at positions 49, 262 and 296 [9].
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the most frequent are AVI (so-called 
“non-taster amino acid sequence”) 
and PAV (so-called “taster amino 
acid sequence”) [9, 13–15]. The 
phenomenon of “super-tasters” can 
only be described at a phenotypic 
level; its genotypic explanation is 
unknown hitherto. Many studies 
have examined the effect of phe-
notypic differences on other sens- 
ory parameters (e.g. perception and 
assessment of other tastes [16, 17]) 
and on food habits [18]. There have 
however not yet been any adequate 
studies on whether these links be-
tween PROP status and sensitivity 
to other tastes can influence the 
practice of sensory science. Is it 
possible that determining the phe-
notypic PROP status at the start of 
the recruitment process can help to 
shorten the selection and training 
process, by selecting more sensitive 
TPs at the start? In other words, do 
PSTs possess generally greater and 
almost comprehensive sensory sen-
sitivity and are they therefore more 
suitable for analytical test procedu-
res than PNTs?
The first article investigated the ef-
fect of sensory training on sweet 
and bitter perception [5]. This is 
now complemented by measure-
ments of the PROP status of the 
test persons (TP). It was examined 
whether the taste sensitivity differs 
between PROP types in untrained 
TPs and whether these differences 
are maintained during training. It 
would then be possible to select TPs 
during the recruitment process who 
possessed greater inherent taste sen-
sitivity, and this would shorten this 
protracted and expensive process.

Materials & methods

Details of the methods can be found 
in the first article, including infor-
mation on the study group, study 
design, tasting rules, structure of 
sensory training, test methods to 
determine taste sensitivity, and sta-
tistics (  Ernährungs umschau 

12/2015, pp. 216 ff.) [5]. Some ad-
ditional information is given below.

Test substances

In order to determine the phenotypic 
PROP status, five highly concentra-
ted sodium chloride solutions (NaCl) 
and eight highly concentrated solu-
tions with propylthiouracil (PROP) 
were prepared one day before tast-
ing (• Table 1). These were prepa-
red with lightly warmed deionized 
water in 1 liter graduated flasks.

Determination of the  
phenotypic PROP status

The PROP status was determined in 
three steps:
a.  The stimulus threshold for 

PROP was determined with a 
two-alternative forced-choice test 
(2AFC) [19]. The stimulus thres- 
hold of PROP tasters was as- 
sumed to be less than 0.1 mmol/L, 
so that the detection limit of PNTs 
was above this limit.

b.  In order to subdivide the PROP 
tasters into PMTs and PSTs, two 
different NaCl/PROP intensity 
ratios (PROP quotients 1 and 
2)2 were calculated from the five 
NaCl and five PROP samples with 
concentrations above the thresh- 
old (D1–D5, • Table 1; using a 
15 cm visual analogue  
scale, VAS; left scale end = 
“not at all salty/bitter”; right 
scale end = “as salty/bitter as I 
have ever perceived”, [20]). The 
assessments on the VAS were 
transformed into values between 
1 and 5 ([(intensity assessment 

Tab. 1:  Concentrations of the test substances sodium chloride (NaCl) and propylthiouracil (PROP)  
*   Stock solution to prepare D1, D3, D5 and D7 
** Stock solution to prepare D2, D4, D6 and D8 
a   Merck KGaA, Darmstadt; b Fluka, Sigma-Aldrich Chemie GmbH, Steinheim 
D = dilution 

Test Substance Chemical 
Formula 

Molecular 
Weight (g/mol)

Concentration Series

salty sodium chloridea NaCl 58.44 Verdünnung g/L mol/L

D1 58.44 1.00

D2 18.70 0.320

D3 5.84 0.100

D4 1.87 0.032

D5 0.58 0.010

bitter 6-propyl- 
2-thiouracilb

C7H10N2OS 170.23 dilution g/L mol/L

D1 0.54460* 0.0032

D2 0.17023** 0.0010

D3 0.05447 0.00032

D4 0.01702 0.0001

D5 0.00545 0.000032

D6 0.00170 0.00001

D7 0.00055 0.0000032

D8 0.00017 0.000001

2  PROP quotient 1 = [(p1/n1)+(p2/n2)+(p3/
n3)+(p4/n4)+(p5/n5)]/5

   PROP quotient 2 = (p1+p2+p3+p4+p5)/
(n1+n2+n3+n4+n5)

   p1–5 = PROP intensity assessment from the 
VAS; n1–5 = NaCl intensity assessment from 
the VAS

   If there is evidence that the classification of 
the PROP status is biased by outliers (PROP 
quotient 1 is relatively susceptible to out-
liers), PROP quotient 2 is also included in the 
classification.
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in cm/15) x 4]+1), so that an 
unambiguous calculation of 
the PROP quotients was then 
possible. PNTs, PMTs and PSTs 
were classified on the basis of the 
25th and 75th percentiles of the 
PROP quotients. These borderline 
values correspond to the assumed 
¼, ½, ¼-distribution of the 
PROP status in the study group 
[21, 22].

c.  Stepwise classification of the 
PROP status using the results of 
a and b.

Results and discussion

PROP status in untrained TPs
Using the above method, the total 
group (N = 82) was classified into 
22 PNTs (26.8 %), 39 PMTs (47.6 %)  
and 21 PSTs (25.6 %). The results 
for the PROP threshold determina-
tion and NaCl/PROP intensity quoti-
ents are classified as PNTs, PMTs and 
PSTs, as shown in • Table 2. There 

were highly significant differences 
in the parameters in the three PROP 
groups and this indicates that the 
classification method used here leads 
to maximal differences between the 
groups. Contrary to expectations, 
there were even highly significant 
differences between PSTs und PMTs 
in the PROP threshold value, in spite 
of the fact that previous studies [21, 
23] considered that the threshold 
test was unsuitable for differentia-
ting between these PROP types.

Taste thresholds depend on the 
PROP status of untrained TPs

The stimulus and recognition  
thresholds for sweetness in 
sucrose did not significantly differ 
between the three PROP groups, al-
though the numerical value appears 
to be lower for the PSTs than for the 
other groups:
•  Stimulus threshold for sweet: PNTs 

= 1.84 mmol/L; PMTs = 1.85 
mmol/L; PSTs = 1.42 mmol/L;

•  Recognition threshold for sweet: 
PNTs = 14.96 mmol/L; PMTs 
= 13.55 mmol/L; PSTs = 9.77 
mmol/L.

However, the three PROP groups 
differed significantly with respect to 
the detection (p = 0.007; F = 5.40) 
and recognition (p = 0.01; F = 4.89) 
of the bitter caffeine:
•  Stimulus threshold for bitter: 

PNTs = 0.33 mmol/L; PMTs 
= 0.39 mmol/L; PSTs = 0.29 
mmol/L;

•  Recognition threshold for bitter: 
PNTs = 0.85 mmol/L; PMTs 
= 0.72 mmol/L; PSTs = 0.46 
mmol/L.

The different taste sensitivity of 
the PROP types for other tastes 
may be concentration dependent. 
Thus two other studies found that 
PSTs were always more sensitive 
to highly concentrated solutions of 
sucrose, sodium chloride, quinine 
[24, 25], tartaric acid, and iron(II) 
sulphate [25]. Moreover chang 
et al. [26] found a significant cor-
relation between PROP sensitivity 
and sweet (sucrose) and bitter (qui-
nine) solutions, although they used 
much higher concentrations (up to  
1 mol/L) to determine thresholds.

Training effects and the  
PROP status (t0 vs. t1)

After study time point t0, TPs were 
randomly assigned to the control or 
intervention groups. In order to en-
sure that the three PROP types were 
evenly distributed, it was necessary 
to consider the PROP status of the 
TPs. Therefore the TPs were as- 
signed to the intervention or con-
trol group, as shown in • Table 3.  
Significant differences in the stimu-
lus and recognition thresholds 
for sweet samples between t0 and 
t1 (reductions in the stimulus and/
or recognition threshold) were only 
found in intervention PMTs (stimu-
lus threshold at t1 = 1.18 mmol/L; 
p = 0.009; t = 2.89; recognition 
threshold at t1 = 6.31 mmol/L; p 
= 0.01; t = 2.70). Thus, this study 

Tab. 2:  PROP threshold tests and the two PROP quotients separated by PROP status (PROP non-tasters 
[PNTs], PROP medium-tasters [PMTs] and PROP super-tasters [PST]) 
M = arithmetic mean; s = standard deviation (calculated from the original values in log(mmol/L, see article 1, mate-
rial and methods, statistic); *** = significant: p ≤ 0.001

PROP threshold PROP quotient 1 PROP quotient 2

N
M 
(mmol/L)

s M s M s

PNTs 22 0.286 0.716 0.684 0.084 0.614 0.094

*** *** ***

PMTs 39 0.047 0.668 *** 0.996 0.132 *** 0.937 0.139 ***

*** *** ***

PSTs 21 0.019 0.376 1.501 0.235 1.348 0.207

F 20.540 151.111 129.755

*** *** ***

}
}

} } }
} }

} }

PNTs PMTs PSTs overall

Control 
group

N = 10 27 % N = 17 46 % N = 10 27 % N = 37 100 %

45.5 % 43.6 % 47.6 %

Intervention 
group

N = 12 27 % N = 22 49 % N = 11 24 % N = 45 100 %

54.5 % 56.4 % 52.4 %

overall
N = 22 26.8 % N = 39 47.6 % N = 21 25.6 % N = 82 100 %

100 % 100 % 100 % 100 %

Tab. 3:  PROP status (PROP non-tasters PNTs], PROP medium-tasters [PMTs] 
and PROP super-tasters [PST]) and study groups (N = 82)
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group detected and recognized the 
sweet taste of sucrose significantly 
earlier after than before training.
The stimulus threshold for the 
bitter caffeine taste samples 
was only significantly reduced 
for the control PMTs (t1 = 0.34 
mmol/L; p = 0.02; t = 2.58; cf. 
• Figure 1). In contrast, the re-
cognition of the bitter taste  
(cf. • Figure 2) in the threshold test 
improved significantly for the con-
trol PNTs (recognition threshold 
at t1 = 0.54 mmol/L; p = 0.04;  
t = 2.46), intervention PNTs (recog-
nition threshold at t1 = 0.44 mmol/L; 
p = 0.007; t = 3.42) and interven-
tion PMTs (recognition threshold 
at t1 = 0.46 mmol/L; p = 0.03;  
t = 2.43). Both PST groups (control 
and intervention) maintained their 
taste sensitivity for sweet and bit-
ter at the same level as at t0. It was 
interesting to note that the effect 
of experience, as noted in the first 
article [5], was also demonstrable 
when the PROP status was inclu-
ded. Thus the PMTs and PNTs in the 
control group benefited from their 
growing experience in dealing with 
sensory principles and exhibited sig-
nificant improvements in the bitter 
caffeine threshold test. In this way, 
as a result of training and ex-
perience, all PROP types achie-
ved the same taste sensitivity 
for caffeine and the differences 
in sensitivity that were demon- 
strated without training were 
levelled off.
We are only aware of one other 
study which compared the test per-
formance and precision of trained 
and untrained TPs with allowance 
for the PROP status [27]. But in con-
trast to the present data, this recom-
mended that the PROP status should 
be used as a selection criterion for 
panel recruitment. In the study of 
DE Wijk et al., untrained PSTs could 
better differentiate the product prop- 
erties of vanilla desserts than could 
untrained PNTs. Then untrained 
PSTs achieved a similarly good re-
sult to trained TPs (the trained panel 

contained only PMTs and PSTs). 
However, DE Wijk et al. [27] failed 
to investigate whether the test per-
formance of the less taste sensitive 
untrained PNTs could be changed 

by sensory training. In an initial 
step, this was demonstrated in the 
present study for the perception of 
basic tastes.

Fig. 1:  Stimulus threshold for bitter (caffeine) for PROP non-tasters (PNTs), PROP me-
dium-tasters (PMTs) and PROP super-tasters (PSTs): comparison between study 
time points t0 and t1 (after sensory training [intervention] or a one week pause 
[untrained = control]) 
PNTs control: n = 10; PNTs intervention: n = 11; PMTs control: n = 16; PMTs intervention: n = 20; 
PSTs control: n = 9; PSTs intervention: n = 10 (*) = trend (p ≤ 0.10); * = significant: p ≤ 0.05

Fig. 2:  Recognition threshold for bitter (caffeine) for PROP non-tasters (PNTs), PROP me-
dium-tasters (PMTs) and PROP super-tasters (PSTs): comparison between study 
time points t0 and t1 (after sensory training [intervention] or a one week pause 
[untrained = control]) 
PNTs control: n = 10; PNTs intervention: n = 11; PMTs control: n = 16; PMTs intervention: n = 20; 
PSTs control: n = 9; PSTs intervention: n = 10 (*) = trend (p ≤ 0.10); * = significant: p ≤ 0.05 
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Taste sensitivity of the PROP 
groups over time (t0, t1 and t2)

Training effects are evident as an 
improvement in taste sensitivity 
between the time points t0, t1 and t2. 
These were found for the sweet and 
bitter recognition threshold for the 
following groups: 

Recognition threshold for the  
sweet sucrose samples
The intervention PNTs significantly 
improved their recognition of the 
sweet sucrose taste, both between t0 
and t2 (p = 0.04; t = 2.31) and be-
tween t1 and t2 (p = 0.04; t = 2.36). 
The recognition threshold at t2 was 
4.57 mmol/L. This means that there 
was an additional reduction in the 
recognition threshold at t2 in spite of 
the sensory pause of 29 weeks.
The intervention PMTs significantly 
improved their recognition of the 
sweet taste at t2 in comparison to 
t0 (p = 0.007; t = 3.12). The rec- 
ognition threshold at t2 was 5.01 
mmol/L. For this group, whose sen-
sitivity had already been advanced 
by training, no difference was found 
between t1 and t2, so that their taste 
sensitivity for sweet remained at the 
level of t1, even with the pause of 
29 weeks without participation in 
sensory tests.

Recognition threshold for the  
bitter caffeine samples
The intervention PMTs exhibited a 
significant reduction in the bitter rec- 
ognition threshold between t0 and t2 
(p = 0.01; t = 2.84); the value at 
t2 was 0.4 mmol/L. They therefore 
sustained the low level attained by 
training even after a relatively pro- 
tracted sensory pause. Deterioration 
in the sensitivity to sucrose or caf-
feine was equivalent to an increase 
in taste thresholds.

No such changes were found in any 
group over the three time points. In 
general, the PSTs exhibited the most 
stable taste sensitivity over the three 
time points. Their initial low level 

for taste sensitivity was maintained 
over t1 and t2. However, training re-
duced the initial differences between 
PNTs, PMTs and PSTs with respect 
to the bitter taste of caffeine.

Limitations

This study examined a highly ho-
mogenous study group, consisting 
of young female students of Euro-
pean origin. In addition, the study 
concentrated on two of five basic 
tastes. In order to confirm our re-
sults on the effects of training and 
experience and how these lead to a 
levelling off of the effects of the phe-
notypic PROP status, additional stu-
dies would be necessary with male 
and/or older TPs; these should also 
cover the other basic tastes (salty, 
sour, umami), as well as complex 
stimuli (e.g. beverages and foods).

Application and outlook

As our studies and conclusions are 
inconsistent with those of DE Wijk 
et al. [27], additional investiga-
tions must be carried out to clarify 
whether there are TPs with a phe-
notypic “general and comprehen-
sive sensory sensitivity” probably 
unrelated to the substance PROP 
[28]. This might serve to shorten 
the selection procedure for panel 
formation, or to generate additio-
nal information about TPs which 
might complement the assessment 
and comparison of test results. For 
example, two recent studies have 
demonstrated a correlation between 
polymorphism of the umami recep-
tor and the intensity assessment for 
the other basic taste types [29], as 
well as with an overall taste sen-
sitivity (OTS)-parameter. This is 
calculated from the taste sensiti-
vity to various reference substan-
ces and correlates very well with 
general taste sensitivity [30]. It has 
long been discussed to what extent 
the phenomenon of “super-tast-

ing” can be explained by relatively 
high densities of fungiform taste 
papillae on the tongue, with more 
intense innervation [31]. It must 
also be investigated to what extent 
the time point of the evaluation of 
PROP status influences phenotypic 
expression. For example, it has been 
shown that trained TPs are only 
made up of PSTs and PMTs [27]. 
Unfortunately, the authors failed to 
discuss whether the PNTs were “sor-
ted out” during the training process, 
or whether, as a consequence of the 
sensory training, the TPs employed 
other parameters to evaluate PROP 
intensity and therefore restricted 
their allocation to PSTs and PMTs.

Conclusion

There are ethical and medical reser-
vations about the broad use of phe-
notypic PROP screening in practical 
sensory science. Quite apart from 
this, our data indicate that the initial 
differences between PNTs, PMTs and 
PSTs with respect to taste sensitivity 
to caffeine can be balanced by train-
ing, experience and habituation. It 
follows that determining the PROP 
status at the start of the selection 
process provides no additional bene-
fit by shortening this protracted and 
tedious process.
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