Abstract
Numerous epidemiological studies indicate that the consumption of whole grains or whole grain products is associated with a reduced risk for chronic diseases. Apart from vitamins and essential fatty acids present in whole grains, particularly dietary fiber contributes to health-promoting effects of whole grain products. Especially, for the “soluble dietary fiber” β-glucan, which is present in barley and oat, positive health-promoting effects regarding diabetes mellitus or cardiovascular diseases are described. These effects are based on the reduction of postprandial glucose values as well as cholesterol-lowering effects. The present article provides an overview of current data regarding physiological mechanisms of barley and oat β-glucan.

Keywords: β-glucan, barley, oat, dietary fiber, diabetes mellitus type 2, cardiovascular diseases

Introduction
The incidence of non-communicable and chronic diseases such as diabetes mellitus type 2 (DMT2), cardiovascular diseases and cancer is constantly increasing worldwide. Thereby, in Germany and Europe, cardiovascular diseases are the most common cause of death accounting for 40% of all deaths followed by cancer which accounts for 23% of all death cases [1]. In the last years, also increasing incidences for DMT2 are observed. At present, nearly 7.2% of the 18- to 79-year-old population suffer from this chronic metabolic disorder [2]. Apart from an effective therapy, preventive strategies are necessary to stop this trend.

Prevention through nutrition rich in dietary fiber
Due to a change of lifestyle-factors, in particular by means of a healthy, well-balanced and dietary fiber-rich nutrition, it is possible to inhibit the development of different chronic diseases or rather to support a therapy [4]. Numerous epidemiologic studies indicate that the consumption of dietary fiber from whole grains or whole grain products is associated with a reduced risk for DMT2, cardiovascular diseases, cancer and obesity [5, 6]. The so-called “soluble dietary fiber”, in particular β-glucan, which is predominantly present in cereals such as barley and oat, exhibit diverse health-promoting effects. β-glucan is a high-molecular non-starch polysaccharide consisting of β-(1-3)- and β-(1-4)-linked β-D-glucopyranosyl-subunits in varying proportions. With 3–11%, barley (● Figure 1) contains the highest amounts of β-glucan followed...
Health claims related to β-glucan

Meanwhile, several studies prove the positive health-related effects of β-glucan from barley and oat. These studies provide the basis for already approved health claims related to the reduction of cholesterol levels and glycemic response. To achieve a reduction of the postprandial glycemic response, 4 g β-glucan from barley or oat for each 30 g of available carbohydrates should be consumed per meal according to the current health claim (reviewed in [13, 14]). A reduction of cholesterol levels, which is related to a reduced risk for cardiovascular diseases, is achieved in hypercholesteremic patients with 3 g β-glucan per day [14–17].

Health effects of β-glucan

Reduction of cholesterol

Positive health effects of high-molecular β-glucans are, amongst others, based on its pronounced viscosity in aqueous solutions. The consumption increases viscosity of the chyme in the upper gastrointestinal tract [18] which leads to an increased binding of bile acids and their subsequent excretion [19, 20]. Bile acids are synthesized de novo by the cholesterol-7α-hydroxylase which is the key enzyme of bile acid synthesis. Hereby, plasma cholesterol serves as substrate for newly synthesized bile acids which leads to a reduction of blood cholesterol levels [21]. A meta-analysis [12], including 11 studies, could show that the intake of barley products or β-glucan from barley leads to a significant reduction of total cholesterol as well as LDL-cholesterol levels (Table 1). Similar results could be obtained for oat-β-glucans in a meta-analysis of 28 studies [22]. Also Ho et al. confirmed the reduction of LDL-cholesterol as well as non-HDL-cholesterol levels by β-glucan derived from barley and oat in two meta-analyses [23, 24].

Other mechanisms

Furthermore, β-glucan is fermented by intestinal bacteria in the colon leading to the formation of short-chain fatty acids (SCFA) such as acetate, propionate and butyrate [29, 30]. As signal molecules, SCFA are able to modulate the glucose- and cholesterol metabolism via distinct receptors (e.g. Ffr 2/3, free fatty acid receptors) (reviewed in [31]). Via these receptors SCFA can increase the concentration of gastrointestinal hormones such as GLP-1 (glucagon-like–peptide 1) and PYY (peptide YY). PYY induces glucose intake in muscle- and fat tissue and GLP-1 indirectly reduces blood glucose concentration by increasing the concentration of insulin and reducing the glucagon production in the pancreas. In-vitro-studies indicated...
that especially propionate modulates the cholesterol metabolism by inhibiting enzyme activities of hepatic 3-hydroxy-3-methyl-glutaryl-CoA-synthase and -reductase. Accordingly, application of propionate led to a reduced cholesterol synthesis in livers of rats (reviewed in [31]). Furthermore, there is evidence that SCFA decrease appetite [32–34]. The regulation of glucose and lipid metabolism is therefore closely related to the regulation of appetite and satiety by SCFA formed in the intestine.

Chemopreventive effects

Besides these effects, SCFA resulting from fermentation of dietary fiber such as β-glucan are able to induce chemopreventive mechanisms in the colon. The term chemoprevention describes the inhibition of carcinogenesis with natural food compounds or synthetic agents. Inhibition of the initiation of cells in the colon into preneoplastic cells is termed primary prevention, whereas the suppression of further transformation to neoplastic cells is termed secondary prevention.

Tab. 1: Overview of selected reviews/meta-analyses regarding the impact of β-glucan-rich barley- and oat-products on parameters of the human lipid metabolism

<table>
<thead>
<tr>
<th>Reference</th>
<th>Intervention</th>
<th>Number of studies</th>
<th>Number of subjects (I/C)</th>
<th>Effect on total cholesterol [mmol/L] M (95 %-CI)</th>
<th>Effect on LDL-cholesterol [mmol/L] M (95 %-CI)</th>
<th>Effect on HDL-cholesterol [mmol/L] M (95 %-CI)</th>
<th>Effect on triglycerides [mmol/L] M (95 %-CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABUMWEIS et al. [12]</td>
<td>barley/β-glucan from barley (3–12 g/d)</td>
<td>11</td>
<td>326</td>
<td>-0.30 (-0.39; -0.21)</td>
<td>-0.27 (-0.34; -0.20)</td>
<td>0.00 (-0.01; 0.02)</td>
<td>-0.05 (-0.10; 0.01)</td>
</tr>
<tr>
<td>Ho et al. [24]</td>
<td>β-glucan from barley (1.4–12.3 g/d)</td>
<td>14</td>
<td>431/292</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHITEHEAD et al. [22]</td>
<td>oat/β-glucan from oat (3–12.4 g/d)</td>
<td>27</td>
<td>2,518</td>
<td>-0.30 (-0.35; -0.24)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOU et al. [26]</td>
<td>oat/β-glucan from oat*</td>
<td>7</td>
<td>237/216</td>
<td>-0.49 (-0.86; -0.12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>216/195</td>
<td>-0.29 (-0.48; -0.09)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>229/208</td>
<td>-0.05 (-0.24; 0.14)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho et al. [23]</td>
<td>β-glucan from oat 1.2–12.3 g/d</td>
<td>57</td>
<td>2,419/1947</td>
<td>-0.19 (-0.23; -0.14)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2: Overview of selected reviews/meta-analyses regarding the impact of β-glucan-rich barley- and oat-products on parameters of the human glucose metabolism

<table>
<thead>
<tr>
<th>Reference</th>
<th>Intervention</th>
<th>Number of studies</th>
<th>Number of subjects (I/C)</th>
<th>Effect on fasting-blood glucose [mmol/L] M (95 %-CI)</th>
<th>Number of studies</th>
<th>Number of subjects (I/C)</th>
<th>Effect on fasting-insulin [pmol/L]b, [mmol/L]c M (95 %-CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE et al. [27]</td>
<td>oat 20–136 g/d</td>
<td>9</td>
<td>314/287</td>
<td>-0.14 (-0.025; -0.03)</td>
<td>8</td>
<td>256/231</td>
<td>-6.95 (-12.90; -1.00)b</td>
</tr>
<tr>
<td></td>
<td>oat-β-glucan 3–10 g/d</td>
<td>16</td>
<td>478/455</td>
<td>-0.13 (-0.21; -0.04)</td>
<td>10</td>
<td>306/291</td>
<td>-6.29 (-11.25; -1.32)c</td>
</tr>
<tr>
<td>HOU et al. [26]</td>
<td>oat/oat-β-glucan*</td>
<td>6</td>
<td>229/208</td>
<td>-0.39 (-0.58; -0.19)</td>
<td>2</td>
<td>36/31</td>
<td>-0.22 (-1.28; 0.84)c</td>
</tr>
<tr>
<td>ZOU et al. [28]</td>
<td>β-glucan from oat or barley 2.8–8.1 g/d</td>
<td>12</td>
<td>302/301</td>
<td>-0.05 (-0.11; 0.02)</td>
<td>6</td>
<td>135/144</td>
<td>0.75 (-1.82; 3.32)c</td>
</tr>
</tbody>
</table>

* quantity not specified
b disclosed as pmol/L
" disclosed as mmol/L
chemoprevention. Primary effects are predominantly mediated by the reduction of reactive oxygen species to provide protection against DNA damage, whereas secondary effects target to inhibit the growth and further transformation of already initiated cells. Butyrate, which apart from acetate and propionate is the main end product of dietary fiber fermentation in the colon, exhibits several chemopreventive effects in particular. On the one hand, it functions as energy source for healthy epithelial colon cells. On the other hand, butyrate acts as histone deacetylase inhibitor and is able to inhibit the growth of already degenerated cells and to induce apoptosis and differentiation in these cells [35–39]. These chemopreventive properties contribute to the reduction of the risk of colon cancer development.

Conclusion
The physiological effects of β-glucan are based on an interaction of several mechanisms which are due to gelation characteristics of glucans on the one hand and to fermentative formation of SCFA in the colon on the other hand. Of particular health-relevance are a reduction of the glycemic response as well as a reduction of the plasma cholesterol concentration after consumption of meals containing β-glucan. Furthermore, β-glucan, as soluble dietary fiber, can substantially contribute to intestinal health and to the prevention of colon cancer [40].

Conflict of Interest
The authors declare no conflict of interest.

Dr. Wiebke Schlörmann
Prof. Dr. Michael Glei1
Friedrich-Schiller-Universität Jena
Institut für Ernährungswissenschaften
Lehrstuhl für Ernährungs toxikologie
Dornburger Str. 24, 07743 Jena
1 E-Mail: michael.glei@uni-jena.de

References
URL: www.bmel.de/SharedDocs/Downloads/Broschüren/Muehlenwirtschaft/2016.html Zugriff 18.07.17
8. Dieckmann K (2011) betaBARLEY® – the new beta-glucan-rich barley for baking and more. f2m baking + bisquit international 1: 58–62

14. EFSA Panel on Dietetic Products NaAN (2011) Scientific opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake (ID 851, 852), reduction of post-prandial glycaemic responses (ID 821, 824), and “digestive function” (ID 850) pursuant to article 13(1) of regulation (EC) No 1924/2006. EFSA Journal 9: 2207–2227

17. EFSA (2011) Scientific opinion on the substantiation of a health claim related to barley beta-glucan and lowering blood cholesterol and reduced risk of (coronary) heart disease pursuant to article 14 of regulation (EC) No 1924/2006. EFSA Journal 9: 2471

DOI: 10.4455/eu.2017.039