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The effects of β-glucans on  
intestinal health
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Introduction

Interest in intestinal diseases and their pre-
vention is continually growing due to their 
increasing prevalence and the resulting health 
problems they cause. In Europe, ulcerative 
colitis (UC) now affects 1 in 198 people and 
Crohn’s disease (CD) affects 1 in 311 peo-
ple, so inflammatory bowel disease (IBD) is 
no longer a rare occurrence [1]. At the same 
time, the number of people for whom the con-
sumption of gluten triggers the multi-faceted 
clinical picture of celiac disease is also increas-
ing globally, although morbidity across the 
entire population is currently around 1% [2]. 
Furthermore, it is estimated that 8.1% of the 
adult population in Western countries suffer 
from irritable bowel syndrome (IBS), a chronic 
functional impairment of the gut that causes 
abdominal pain along with diarrhea and/or 
constipation [3]. The intestines are also par-
ticularly susceptible to cancer [4]. 
In addition, gut health and the development 
of intestinal diseases are strongly influenced 
by environmental factors such as nutrition, 
lifestyle or infections [1]. These diseases can 
affect the intestinal environment, the intesti-
nal immune system and the integrity of the 
intestinal barrier. They have the potential to 
cause increased intestinal permeability (leaky 
gut), together with loss of intestinal homeo-
stasis and increased displacement of unfavor-
able substances into the interior of the body 
[5, 6]. A dysfunctional, leaky intestinal bar-
rier has also been reported in association with 
IBD, IBS, celiac disease and early-onset bowel 
cancer [6, 7]. Certain metabolic diseases (such 
as type 2 diabetes mellitus) and autoimmune 
diseases (such as type 1 diabetes or multiple 
sclerosis), as well as overweight, depression 
and food allergies also appear to be associated 
with altered intestinal permeability [5, 7]. 
However, certain food components can have 
a positive modulating effect on parameters of 
intestinal health, either directly or indirectly 
(through the formation of bioactive metabo-
lites), thus reducing the risk of disease. It ap-
pears that such a modulation can be achieved 
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through the consumption of β-glucans in particular. The potential 
of the β-glucans in barley and oats to reduce both cholesrol and 
postprandial glucose concentrations (  Ernährungs umschau 
10/2017, [8]) has been proven in a large number of studies and 
confirmed by the European Food Safety Authority (EFSA) with 
health claims [9-11]. In addition, there is increasing scientific ev-
idence that β-glucans have positive effects on intestinal health. 
In light of this, this article presents a summary of results from 
cell, animal and human studies on the potential influence of 
β-glucans on the intestinal environment, the intestinal barrier, 
the intestinal immune system and intestinal inflammation.  Fig-
ure 1 provides an overview of the various health-related effects of 
β-glucans discussed below.  

β-glucans—a heterogeneous group of  
substances

The β-glucans are a group of polysaccharides that are composed of 
linked D-glucose monomers linked by β-glycosidic bonds. They occur 
in the cell walls of plants, fungi and bacteria as components that 
provide structural support [12–14]. In the Western diet, cereals such 
as barley (3–11% β-glucans) and oats (3–7% β-glucans) are the most 
relevant β-glucan sources in terms of the quantity provided [15]. 
The primary structure, molecular weight, degree of branching, 
polymer charge and solubility of β-glucans influence their 
biological activity and these attributes may differ depending on 
the source and isolation method [12, 13]. The β-glucans found 
in cereals are mostly linear, unbranched molecules consisting of 
glucose units linked by β(13) and β(14) glycosidic bonds, 

with the proportion of linkages varying 
depending on the cereal species [16, 17]. Due 
to the polymer’s β-glycosidic bonds, after 
consumption, β-glucans enter the human 
colon almost undigested. Once there, they can 
be fermented by the microorganisms in the 
caecum and colon [18–20].
There are also some other foods that are rel-
evant sources of β-glucans. It is well estab-
lished that glucans are present in various 
edible mushroom species, for instance the 
shiitake (Lentinus edodes), which is the most 
commonly consumed mushroom in Japan, 
and oyster mushrooms (Pleurotus spp.), [21, 
22]. The β-glucan content of these mush-
room species is 0.2–0.5% of dry matter [23]. 
Other edible fungi and yeasts whose β-glucans 
are currently in the focus of research include 
Schizophyllum commune, Coriolus versicolus, 
Saccharomyces cerevisiae and Agaricus blazei 
[12, 21]. In contrast to cereals, a polymer of 
β(13)-linked glucose with a variable num-
ber of β(16) branches has been identified as 
the most common form of β-glucan in fungi 
[24]. Due to their proven high levels of bio-
activity, some isolated fungal polysaccharides 
are already being sold as commercial prod-
ucts. In addition, there is currently a debate 
about fungal β-glucans as potentially promis-
ing components for use in nutraceuticals and 
functional food [21, 25]. 

β-glucan

maintenance of normal LDL 
cholesterol levels in the blooda

reduction of post-prandial 
glycemic responseb

postulated effect on intestinal 
health 

strengthening of the 
immune system

reduction of 
intestinal inflammation

reinforcement of the 
intestinal barrier

promotion of 
SCFA synthesis

favorable modulation 
of the gut microbiome 

Fig. 1:  Summary of the already accepteda, b or postulated effects of the  
consumption of β-glucans  
LDL = low-density lipoprotein; SCFA = short-chain fatty acids  
a  Health claim, EFSA 2011 – Consumption of beta-glucan from barley, oats or bran (3 g per day) contributes to the maintenance of normal 

blood cholesterol levels
             b  Health claim, EFSA 2011 – Consumption of beta-glucan from barley and oats (4 g per 30 g of available carbohydrates per meal) contri- 

butes to the reduction of post-prandial glycemic responses
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Initial animal studies also suggest that β(13)-glucans from 
algae and bacteria have a potential health benefit [26, 27].

The effects of β-glucans on the  
intestinal environment

Formation of short-chain fatty acids
Fermentation of β-glucans by microbes in the lower part of the 
small intestine and in the colon results in the production of short-
chain fatty acids (SCFAs) [28-30]. SCFAs have been described as 
having various positive effects on gastrointestinal and systemic 
health [31, 32]. For instance, SCFAs cause a reduction in the pH of 
the gut, which helps to inhibit the growth of pathogenic microor-
ganisms [33]. One SCFA that is particularly relevant to health and 
colon function is butyric acid (and its salt, butyrate). Butyrate is 
the main energy source of the epithelial cells of the colon and it is 
thought to have a high anti-carcinogenic potential [34–36]. Study 
results also suggest that butyrate may have an anti-inflamma-
tory effect in intestinal cells and that it may help strengthen in-
testinal barrier function [35]. 
When β-glucans from oats or barley were fermented under in 
vitro conditions, mainly acetate was formed, but some propionate 
and butyrate was also formed [28, 30, 37]. In line with this, an 
increase in intestinal SCFA concentrations was observed in ani-
mal models following interventions with β-glucans from oats, 
barley or bacteria [26, 38, 39]. For example, after a two-week 
diet with 3% barley β-glucans, rats had twice the concentration 
of propionate and about five times the amount of butyrate in 
the cecum compared to the baseline values [38]. The results of 
a human intervention study in 26 healthy subjects [40] and a 
controlled crossover study in 30 volunteers with mild hypercho-
lesterolemia [29] indicate that in humans too, consuming food 
containing barley β-glucan can lead to a significant increase in 
SCFA levels in stool samples. 

Modulation of the intestinal microbiome
Many scientific studies have shown that β-glucans from cere-
als, algae and yeasts influence the growth of intestinal microor-
ganisms [37, 41–45], which can in turn affect the health of the 
human host [46–49]. This means that commensal bacteria in the 
gut are not only involved in the development of tissues and the 
immune system, but rather they also perform important meta-
bolic functions, such as breaking down indigestible carbohydrates 
and synthesizing vitamins.  Furthermore, they can inhibit the col-
onization of the digestive tract by pathogens and can increase the 
barrier function of the intestines. The interactions between bac-
teria and host that may exist vary depending on the composition 
of the microbiome [50]. Microbiome composition varies widely 
between individuals and is influenced by various factors, including 
drugs and nutrition [46, 50]. Changes in bacterial diversity and a 
disturbed balance between bacterial species in the gut (dysbiosis) 
have been observed in diseases such as Crohn's disease [51], type 
2 diabetes [52], infections, obesity and autoimmune diseases [53] 
and it is possible that such changes contribute to the development 
of these conditions [54].

However, dietary fiber can have positive 
health effects in the gastrointestinal tract 
through selective modulation of the microbi-
ome, for instance by increasing the number 
or activity of species of the genera Lactobacil-
lus and Bifidobacterium [55, 56]. For example, 
results from in vitro [57–60] and animal [39, 
61–64] studies indicate that β-glucans from 
oats and barley promote colonization of the 
intestines by  Lactobacillus and Bifidobacterium 
species. However, this prebiotic effect of bar-
ley β-glucan has only been observed in some, 
but not all of the human studies available to 
date. For example, consumption of 3 g of 
barley β-glucan daily for two months in 26 
healthy subjects led to a significant increase 
in fecal lactobacilli [40], and in a study in 
52 healthy subjects who were supplemented 
with only 0.75 g of barley β-glucan per day, 
a bifidogenic effect was observed after 30 
days [65]. By contrast, 14 volunteers with 
metabolic syndrome who took 6 g of barley 
β-glucan per day for 4 weeks and 11 patients 
who had undergone polypectomy and took 
3 g of barley β-glucan per day for 3 months 
did not exhibit any effects in terms of num-
bers of intestinal bifidobacteria or lactoba-
cilli compared to controls [66, 67]. There is 
currently a discussion around whether these 
varying effects could be attributable to differ-
ences in the molecular weight of the β-glu-
cans used [58, 61].

The effects of β-glucans  
on the intestinal barrier

The functionality of the intestinal barrier de-
pends on the integrity of its individual com-
ponents such as the microbiome, the intestinal 
mucosa, the intestinal epithelium, the Lamina 
propria and the intestinal immune system [7]. 
Thanks to the close joining of epithelial cells 
through cell-cell junctions, the intestinal epi-
thelium forms an important physical barrier. 
Importantly, tight junction protein complexes 
between the cells restrict paracellular flow. 
The intestines’ highly viscous mucus, which 
consists of cross-linked mucins, antimicrobial 
factors (e.g. antimicrobial proteins, secretory 
immunoglobulin A [sIgA] and lysozyme) and 
trefoil peptides acts as an additional physical 
and chemical barrier layer that protects the in-
testinal epithelium against direct contact with 
microorganisms [47]. A change in the com-
position of tight junction proteins and mucus 
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components due to β-glucan could therefore 
also affect intestinal permeability.
Various studies on animals have shown that 
there is a positive association between the 
consumption of β-glucan-containing cereal 
products or cereal fibers and intestinal barrier 
function. Rats on a completely parenteral or 
elemental diet with oral administration of 2 g  
oat fiber exhibited significantly reduced dis-
placement of enteric bacteria into mesenteric 
lymph nodes [68]. In addition, adding bar-
ley malt (0.5–1.2 g β-glucan per 100 g dry 
matter) to animal feed successfully prevented 
the increase in amino acid concentration in 
the portal serum that would be expected as 
a consequence of a high-fat diet. This effect 
was associated with an altered expression 
of the tight junction proteins occludin and 
Zonula occludens 1 (ZO-1) and was evaluated 
as an expression of reduced permeability in 
the small intestine and distal colon [69]. In 
mice (high-fat diet [70]) and pigs (diet with 
normal fat content [71]), enrichment of feed 
with β-glucan from barley and oats (10% 
and 5%, respectively) also resulted in altered 
intestinal gene expression of tight junction 
proteins, which was considered conducive to 
intestinal barrier function. Studies in pigs also 
suggest that β-glucan from oats may increase 
mucosal protective function. For example, in-
creasing the β-glucan content of animal feed 
(to 1.5% and 7.0%) resulted in reduced mucus 
permeability [72] and increased activity of 
goblet cells (a cell type that produces mucin) 
[73]. However, there are also some indications 
that β-glucans could impair intestinal barrier 
function. For instance, feeding 3 mg of oat 
β-glucan to mice resulted in lower lysozyme 
expression in the small intestine and impaired 
intestinal epithelial integrity compared to 
control animals [74]. In addition, following 
high β-glucan consumption (73.7 g/kg feed), 
weaned young pigs exhibited increased intes-
tinal permeability (mannitol flux) in the ileum 
and increased adhesion of E. coli to isolated en-
terocytes compared to the controls (6.4 g/kg 
feed) [75]. 
The results of the studies conducted in humans 
to date also vary widely. In a randomized 
human intervention study in 20 healthy sub-
jects, consumption of a standardized breakfast 
with barley seed bread (6.6 g soluble non-
starch polysaccharides per day) for three days 
led to a postprandial increase in plasma con-
centration of glucagon-like peptide 2 (GLP-2)  
[76]. This peptide is considered a marker of 
intestinal barrier function and it is assumed 

to be relevant to epithelial cell proliferation and intestinal growth. 
However, in a second interventional study in 21 students who 
consumed barley seed bread (5.0 g soluble non-starch polysac-
charides per day) for four days, the increase in GLP-2 could not be 
confirmed. In this case, a positive effect was only observed when 
probiotics were also taken [77]. 

The effects of β-glucans on the  
intestinal immune system

β-glucans are generally considered potent stimulators of the im-
mune system, with the ability to influence the activity of immune 
cells [12, 13, 78]. The immunomodulatory properties of β-glu-
cans include activation of macrophages, T helper cells, neutrophils 
and natural killer cells, promotion of T-cell differentiation and 
activation of an alternative complement pathway, which together 
can affect humoral immunity as well as cellular immunity [12, 
78]. Animal studies have demonstrated several times that this im-
munostimulatory effect also leads to higher resistance to various 
pathogens (e.g. Staphylococcus aureus, Salmonella enteritidis) in vivo 
and a better survival rate in infected animals [79–82]. The ma-
jority of these studies investigated the immunological potential 
of β(13)-glucans from fungi and yeasts. However, the in vitro 
[28, 83] and in vivo studies [75, 79] that are available suggest 
that β-glucans from cereals also have an immunomodulatory ef-
fect. Furthermore, observations from cell and animal models of 
the intestine suggest that β-glucans from cereals and from fungi, 
yeasts, algae and bacteria also strengthen intestinal immune func-
tion [42, 84–87]. For example, human small intestine and colonic 
cell lines incubated with fecal water from ileostomy patients who 
were on a diet enriched with oat β-glucan (5 g/day) were found 
to have better immune defenses than those incubated with placebo 
fecal water [85]. These increased immune defenses were character-
ized by significantly increased chemokine production and expres-
sion of adhesion molecules. In a mouse model, oral administration 
of β-glucans also resulted in stimulation of the intestinal immune 
system, which manifested as activation of Peyer’s patch immune 
cells (fungal β-glucan [84]) or a mild inflammatory state in en-
terocytes (β-glucan from oat [88]).  
In mechanistic terms, the immunomodulatory effect of 
β(13)-glucans can likely be explained by the binding of polysac-
charides to certain receptors (immune receptor membrane com-
plement receptor 3 [CR3] and Dectin-1) on the surface of immune 
cells (e.g. natural killer cells and macrophages) [78]. Dectin-1 
binding can trigger glucan uptake and signaling pathways for 
phagocytosis as well as the production of cytokines and reactive 
oxygen species [89]. Expression of Dectin-1 has also been demon-
strated in isolated human intestinal epithelial cells and in different 
epithelial cell lines of the colon (HT-29 and SW480). In this case, 
binding of β-glucans led to chemokine induction [86, 90].
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The effects of β-glucans on  
intestinal inflammation

The immunomodulatory effects of consumption of dietary fibers 
such as β-glucans can contribute to the prevention and treatment 
of acute and chronic inflammations of the intestine [78]. Cur-
rently, corticosteroids, aminosalicylates and immunomodulators 
are used as standard therapy for IBD, but the use of anti-TNF-α 
antibodies (e.g. Infliximab) has proven to be the most promising 
treatment strategy. These options involve both side effects and 
high costs. The use of dietary fibers therefore appears to be a use-
ful supplementary approach and/or alternative, because fiber is 
thought to have the potential to prevent IBD [91–93]. In a ran-
domized, placebo-controlled study, for example, the treatment of 
50 IBD patients (UC or CD) with a mushroom extract containing 
β-glucan (AndoSan™) led to an insignificant but clear increase 
in quality of life and a slight improvement in proinflammatory 
markers. This was thought to be the expression of a weak sys-
temic anti-inflammatory effect [94, 95]. Furthermore, additional 
administration of a mixture of β-glucan, inositol and digestive 
enzymes in IBD patients was associated with a reduction in gas-
trointestinal symptoms compared to conventional therapy (treat-
ment with 5-aminosalicylic acid) [96]. 
Administration of isolated β-glucans caused a reduction of proin-
flammatory markers in the colons of piglets [42, 97, 98]. In addi-
tion, studies in various animal models of intestinal inflammation 
have demonstrated an intestinal protective effect following oral 
and intragastric administration of β-glucan before or after chemi-
cal induction of colitis. For example, β-glucans from yeasts, fungi, 
bacteria and oats reduced the expression of proinflammatory 
markers in the colon, improved the clinical symptoms of colitis 
and protected the gut from lesions, epithelial changes and leuko-
cyte infiltration [14, 99–103]. The strength of the effect appears 
to depend on the structural properties of the polysaccharides [99]. 

Conclusion

β-glucans have a variety of effects that are relevant to health. 
The potential of this group of substances to reduce both choles-
terol and postprandial glucose concentrations has been proven in 
a large number of studies and has been confirmed by the EFSA 
with health claims in the context of authorizations. However, 
the current data is less clear-cut in terms of effects on intestinal 
health markers. Nevertheless, there is increasing scientific evi-
dence that β-glucans have positive effects on intestinal parame-
ters. For example, studies show that regular consumption of foods 
that contain β-glucan is associated with increased formation of 
health-promoting short-chain fatty acids, with a favorable effect 
on the intestinal microbiome, with activation of the intestinal im-
mune system and with a strengthened intestinal barrier, as well 
as with a reduction of inflammatory processes in the intestine. 
Therefore, consumption of at least 3 g of β-glucans per day ap-
pears to be advisable for intestinal health. 
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